Almorox J, Hontoria C & Benito M. (2005). Statistical validation of daylength definitions for estimation of global solar radiation in toledo, spain. Energy Conversion and Management, 46(9-10), 1465–1471.
Baldocchi D & Wong S. (2008). Accumulated winter chill is decreasing in the fruit growing regions of california. Climatic Change, 87(1), 153–166. doi: 10.1007/s10584-007-9367-8
Benmoussa H, Ghrab M, Mimoun MB & Luedeling E. (2017a). Chilling and heat requirements for local and foreign almond (prunus dulcis mill.) cultivars in a warm mediterranean location based on 30 years of phenology records. Agricultural and Forest Meteorology, 239, 34–46. doi: 10.1016/j.agrformet.2017.02.030
Benmoussa H, Luedeling E, Ghrab M, Ben Yahmed J & Ben Mimoun M. (2017b). Performance of pistachio (Pistacia vera L.) in warming Mediterranean orchards. Environmental and Experimental Botany, 140, 76–85. doi: 10.1016/j.envexpbot.2017.05.007
Benmoussa H, Luedeling E, Ghrab M & Mimoun MB. (2020). Severe winter chill decline impacts tunisian fruit and nut orchards. Climatic Change, 162, 1249–1267. doi: 10.1007/s10584-020-02774-7
Benmoussa H, Mimoun MB, Ghrab M & Luedeling E. (2018). Climate change threatens central tunisian nut orchards. International Journal of Biometeorology, 62(12), 2245–2255. doi: 10.1007/s00484-018-1628-x
Buerkert A, Fernandez E, Tietjen B & Luedeling E. (2020). Revisiting climate change effects on winter chill in mountain oases of northern oman. Climatic Change, 162, 1399–1417. doi: 10.1007/s10584-020-02862-8
Crossa-Raynaud P. (1955). Effets des hivers doux sur le comportement des arbres fruitiers à feuilles caduques: Observations faites en tunisie à la suite de l’hiver 1954-1955. Impr. La Rapide.
del Barrio R, Fernandez E, Brendel AS, Whitney C, Campoy JA & Luedeling E. (2020). Climate change impacts on agriculture’s southern frontier–perspectives for farming in north patagonia. International Journal of Climatology, 41(1), 726–742. doi:
Erez A & Fishman S. (1997). Dynamic model chilling portions (excel worksheet). Retrieved from
Fadón E, Fernandez E, Behn H & Luedeling E. (2020). A conceptual framework for winter dormancy in deciduous trees. Agronomy, 10(2), 241. doi: 10.3390/agronomy10020241
Fernandez E, Krefting P, Kunz A, Do H, Fadón E & Luedeling E. (2021). Boosting statistical delineation of chill and heat periods in temperate fruit trees through multi-environment observations. Agricultural and Forest Meteorology, 310, 108652. doi: 10.1016/j.agrformet.2021.108652
Fernandez E, Schiffers K, Urbach C & Luedeling E. (2022). Unusually warm winter seasons may compromise the performance of current phenology models – predicting bloom dates in young apple trees with PhenoFlex. Agricultural and Forest Meteorology, 322, 109020. doi: 10.1016/j.agrformet.2022.109020
Fernandez E, Whitney C, Cuneo IF & Luedeling E. (2020a). Prospects of decreasing winter chill for deciduous fruit production in chile throughout the 21st century. Climatic Change, 423–439. doi: 10.1007/s10584-019-02608-1
Fernandez E, Whitney C & Luedeling E. (2020b). The importance of chill model selection—a multi-site analysis. European Journal of Agronomy, 119, 126103. doi: 10.1016/j.eja.2020.126103
Guo L, Dai J, Ranjitkar S, Xu J & Luedeling E. (2013). Response of chestnut phenology in china to climate variation and change. Agricultural and Forest Meteorology, 180, 164–172. doi: 10.1016/j.agrformet.2013.06.004
Guo L, Dai J, Ranjitkar S, Yu H, Xu J & Luedeling E. (2014a). Chilling and heat requirements for flowering in temperate fruit trees. International Journal of Biometeorology, 58(6), 1195–1206. doi: 10.1007/s00484-013-0714-3
Guo L, Dai J, Wang M, Xu J & Luedeling E. (2015a). Responses of spring phenology in temperate zone trees to climate warming: A case study of apricot flowering in china. Agricultural and Forest Meteorology, 201, 1–7. doi: 10.1016/j.agrformet.2014.10.016
Guo L, Luedeling E, Dai J-H & Xu J-C. (2014b). Differences in heat requirements of flower and leaf buds make hysteranthous trees bloom before leaf unfolding. Plant Diversity and Resources, 36(2), 245–253. doi: 10.7677/ynzwyj201413081
Guo L, Wang J, Li M, Liu L, Xu J, Cheng J, Gang C, Yu Q, Chen J, Peng C & Luedeling E. (2019). Distribution margins as natural laboratories to infer species’ flowering responses to climate warming and implications for frost risk. Agricultural and Forest Meteorology, 268, 299–307. doi: 10.1016/j.agrformet.2019.01.038
Guo L, Xu J, Dai J, Cheng J & Luedeling E. (2015b). Statistical identification of chilling and heat requirements for apricot flower buds in beijing, china. Scientia Horticulturae, 195, 138–144. doi: 10.1016/j.scienta.2015.09.006
Linvill DE. (1990). Calculating chilling hours and chill units from daily maximum and minimum temperature observations. HortScience, 25(1), 14–16. doi: 10.21273/HORTSCI.25.1.14
Luedeling E. (2018). Interpolating hourly temperatures for computing agroclimatic metrics. International Journal of Biometeorology, 62(10), 1799–1807. doi: 10.1007/s00484-018-1582-7
Luedeling E. (2020). The challenge of warming winters – do we understand tree dormancy enough to prepare deciduous orchards in warm places? Acta Horticulturae, 1281, 441–447. doi: 10.17660/ActaHortic.2020.1281.58
Luedeling E, Blanke M & Gebauer J. (2009a). Auswirkungen des Klimawandels auf die Verfügbarkeit von Kältewirkung (Chilling) für Obstgehölze in Deutschland. Erwerbs-Obstbau, 51(3), 81–94. doi: 10.1007/s10341-009-0085-4
Luedeling E & Brown PH. (2011a). A global analysis of the comparability of winter chill models for fruit and nut trees. International Journal of Biometeorology, 55(3), 411–421. doi: 10.1007/s00484-010-0352-y
Luedeling E & Gassner A. (2012). Partial least squares regression for analyzing walnut phenology in california. Agricultural and Forest Meteorology, 158, 43–52. doi: 10.1016/j.agrformet.2011.10.020
Luedeling E, Gebauer J & Buerkert A. (2009b). Climate change effects on winter chill for tree crops with chilling requirements on the Arabian Peninsula. Climatic Change, 96(1-2), 219–237. doi: 10.1007/s10584-009-9581-7
Luedeling E, Girvetz EH, Semenov MA & Brown PH. (2011b). Climate change affects winter chill for temperate fruit and nut trees. PloS One, 6(5), e20155. Retrieved from
Luedeling E, Guo L, Dai J, Leslie C & Blanke MM. (2013a). Differential responses of trees to temperature variation during the chilling and forcing phases. Agricultural and Forest Meteorology, 181, 33–42. doi: 10.1016/j.agrformet.2013.06.018
Luedeling E, Hale A, Zhang M, Bentley WJ & Dharmasri LC. (2009c). Remote sensing of spider mite damage in california peach orchards. International Journal of Applied Earth Observation and Geoinformation, 11(4), 244–255. doi: 10.1016/j.jag.2009.03.002
Luedeling E, Kunz A & Blanke MM. (2013b). Identification of chilling and heat requirements of cherry trees—a statistical approach. International Journal of Biometeorology, 57(5), 679–689. doi: 10.1007/s00484-012-0594-y
Luedeling E, Schiffers K, Fohrmann T & Urbach C. (2021). Pheno-flex - an integrated model to predict spring phenology in temperate fruit trees. Agricultural and Forest Meteorology, 307, 108491. doi: 10.1016/j.agrformet.2021.108491
Luedeling E, Zhang M & Girvetz EH. (2009d). Climatic Changes Lead to Declining Winter Chill for Fruit and Nut Trees in California during 1950–2099. PLoS ONE, 4(7), e6166. doi: 10.1371/journal.pone.0006166
Luedeling E, Zhang M, Luedeling V & Girvetz EH. (2009e). Sensitivity of winter chill models for fruit and nut trees to climatic changes expected in California’s Central Valley. Agriculture, Ecosystems & Environment, 133(1-2), 23–31. doi: 10.1016/j.agee.2009.04.016
Luedeling E, Zhang M, McGranahan G & Leslie C. (2009f). Validation of winter chill models using historic records of walnut phenology. Agricultural and Forest Meteorology, 149(11), 1854–1864. doi: 10.1016/j.agrformet.2009.06.013
Martı́nez-Lüscher J, Hadley P, Ordidge M, Xu X & Luedeling E. (2017). Delayed chilling appears to counteract flowering advances of apricot in southern UK. Agricultural and Forest Meteorology, 237, 209–218.
Martı́nez-Lüscher J, Kizildeniz T, Vučetić V, Dai Z, Luedeling E, Leeuwen C van, Gomès E, Pascual I, Irigoyen JJ, Morales F, et al. (2016). Sensitivity of grapevine phenology to water availability, temperature and CO\(_2\) concentration. Frontiers in Environmental Science, 4, 48. doi: 10.3389/fenvs.2016.00048
Nuzzo R. (2014). Scientific method: Statistical errors. Nature News, 506(7487), 150. doi: 10.1038/506150a
Parmesan C & Yohe G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421(6918), 37–42. doi:
Platts PJ, Omeny P & Marchant R. (2015). AFRICLIM: High-resolution climate projections for ecological applications in africa. African Journal of Ecology, 103–108. doi: 10.1111/aje.12180
Pope K, Da Silva D, Brown P & DeJong T. (2014). A biologically based approach to modeling spring phenology in temperate deciduous trees. Agricultural and Forest Meteorology, 198, 15–23. doi: 10.1016/j.agrformet.2014.07.009
Richardson E, Seeley S & Walker D. (1974). A model for estimating the completion of rest for "redhaven" and "elberta" peach trees. HortScience, 9(4), 331–332.
Spencer J. (1971). Fourier series reprensentation of the position of the sun. Search, 2(5), 172.
Yu H, Luedeling E & Xu J. (2010). Winter and spring warming result in delayed spring phenology on the tibetan plateau. Proceedings of the National Academy of Sciences, 107(51), 22151–22156. doi: 10.1073/pnas.1012490107
Yu H, Xu J, Okuto E & Luedeling E. (2012). Seasonal response of grasslands to climate change on the tibetan plateau. PLoS One, 7(11), e49230. doi: 10.1371/journal.pone.0049230