Primary Mechanical Modification to Improve Performance of Miscanthus as Stand-Alone Growing Substrates

Abstract

Selecting proper mechanical processing can improve performance of miscanthus substrates. We studied the effects of mechanical processing methods on substrate morphology, hydrological properties, pH, and nitrogen immobilization. Miscanthus × giganteus biomass was processed into field chips (FC, forage harvester), shreds (S5, mechanical fraying machine through a 5-mm screen) and chips (C15, C10, C5 and C3, hammermill with screen size of 15, 10, 5, or 3 mm). Processed miscanthus materials were also tested as propagation substrates for Chinese cabbage seedlings. Results showed that particle size distribution of miscanthus substrates formed four groups in ascending order of particle size: C3 extless C5 extless (C10, C15, S5) extless FC. The finer miscanthus substrates had higher water holding capacity following the same groupings in particle size. The hydrophobicity of processed miscanthus was low and reversible, with the increasing order of risk as C3 extless C5 extless C10, C15 extless S5, FC. All miscanthus substrates had similar and low pH buffering capacity. Nitrogen immobilization was similar among miscanthus substrates. The seedlings in miscanthus substrates had similar germination rates but a lower biomass compared to those grown in peat and coir. Primary mechanical modification of miscanthus offers opportunities for different sizes of substrate materials with few changes to the physical or chemical properties tested in this work.

Publication